Targeting autophagy potentiates the apoptotic effect of histone deacetylase inhibitors in t(8;21) AML cells.
نویسندگان
چکیده
The role of autophagy during leukemia treatment is unclear. On the one hand, autophagy might be induced as a prosurvival response to therapy, thereby reducing treatment efficiency. On the other hand, autophagy may contribute to degradation of fusion oncoproteins, as recently demonstrated for promyelocytic leukemia-retinoic acid receptor α and breakpoint cluster region-abelson, thereby facilitating leukemia treatment. Here, we investigated these opposing roles of autophagy in t(8;21) acute myeloid leukemia (AML) cells, which express the most frequently occurring AML fusion oncoprotein, AML1-eight-twenty-one (ETO). We demonstrate that autophagy is induced by AML1-ETO-targeting drugs, such as the histone deacetylase inhibitors (HDACis) valproic acid (VPA) and vorinostat. Furthermore, we show that autophagy does not mediate degradation of AML1-ETO but rather has a prosurvival role in AML cells, as inhibition of autophagy significantly reduced the viability and colony-forming ability of HDACi-treated AML cells. Combined treatment with HDACis and autophagy inhibitors such as chloroquine (CQ) led to a massive accumulation of ubiquitinated proteins that correlated with increased cell death. Finally, we show that VPA induced autophagy in t(8;21) AML patient cells, and combined treatment with CQ enhanced cell death. Because VPA and CQ are well-tolerated drugs, combinatorial therapy with VPA and CQ could represent an attractive treatment option for AML1-ETO-positive leukemia.
منابع مشابه
Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors.
Epigenetic modifying enzymes such as histone deacetylases (HDACs), p300, and PRMT1 are recruited by AML1/ETO, the pathogenic protein for t(8;21) acute myeloid leukemia (AML), providing a strong molecular rationale for targeting these enzymes to treat this disease. Although early phase clinical assessment indicated that treatment with HDAC inhibitors (HDACis) may be effective in t(8;21) AML pati...
متن کاملInhibitors of histone deacetylase relieve ETO-mediated repression and induce differentiation of AML1-ETO leukemia cells.
The (8;21) translocation, found in 12% of acute myeloid leukemia (AML), creates the chimeric fusion product, AML1-ETO. Previously, we demonstrated that the ETO moiety recruits a transcription repression complex that includes the histone deacetylase (HDAC1) enzyme. Here, we used inhibitors of HDAC1 to study the pathophysiology of AML1-ETO. Both the potent inhibitor, trichostatin (TSA), and the w...
متن کاملRole of autophagy in histone deacetylase inhibitor-induced apoptotic and nonapoptotic cell death.
Autophagy is a cellular catabolic pathway by which long-lived proteins and damaged organelles are targeted for degradation. Activation of autophagy enhances cellular tolerance to various stresses. Recent studies indicate that a class of anticancer agents, histone deacetylase (HDAC) inhibitors, can induce autophagy. One of the HDAC inhibitors, suberoylanilide hydroxamic acid (SAHA), is currently...
متن کاملEffect of trichostatin A on histone deacetylase 1 (HDAC 1) and CIP/KIP (p21CIP1/WAF1, p27KIP1, and p57KIP2) gene expression, cell growth inhibition and apoptosis induction in lung cancer COR-L105 cell line. Abstract
Effect of trichostatin A on histone deacetylase 1 (HDAC 1) and CIP/KIP (p21CIP1/WAF1, p27KIP1, and p57KIP2) gene expression, cell growth inhibition and apoptosis induction in lung cancer COR-L105 cell line. Abstract Background: Lung cancer is one the leading cause of cancer-related death worldwide, with more than 1.2 million deaths each year. In addition to genetic mutations, epigenetic modif...
متن کاملAML-1/ETO fusion protein is a dominant negative inhibitor of transcriptional repression by the promyelocytic leukemia zinc finger protein.
The AML-1/ETO fusion protein, created by the (8;21) translocation in M2-type acute myelogenous leukemia (AML), is a dominant repressive form of AML-1. This effect is due to the ability of the ETO portion of the protein to recruit co-repressors to promoters of AML-1 target genes. The t(11;17)(q21;q23)-associated acute promyelocytic leukemia creates the promyelocytic leukemia zinc finger PLZFt/RA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 122 14 شماره
صفحات -
تاریخ انتشار 2013